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Abstract.  Often a sampling program has the objective of detecting the presence of one
or more species. One might wish to obtain a species list for the habitat, or 1o detect the
presence of a rare and possibly endangered species, How can the sampling effort necessary
for the detection of a rare species can be determined? '

The Poisson and the negative binomial are two possible spatial distributions that could
be assumed. The Poisson assumption leads to the simple relationship n = —{1/miog 3,
where # is the number of quadrats needed to detect the presence of a species having density
m, with a chance 8 (the Type 2 error probability) that the species will not be coliected in
any of the »n quadrais. Even if the animals are not randomly distributed the Poisson
distribuiion will be adeguate if the mean density is very low (l.e., the species is rare, which
we arbitrarily define as a true mean density of <0.1 individuals per sample unit), and the
spatial distribution is not highly aggregated. Otherwise a more complicated relationship
based on the negative binomial distribution would have 10 be used.

Published sampiing distributions of 37 unionid mollusc species over river miles (dis-
tance measured along the path of the river; 1 mile = 1.609347 km) in two southern
Appalachian rivers were evaluated o determine the appropriateness of the simple Poisson-
based formula for estimation of necessary sample size to detect species presence. For each
of 273 species X river mile combinations we estimated the mean, the variance, and the
negaiive binomial parameter k, and then estimated “necessary k™ from both the Poisson-
and the negative-binomial-based formulae. We defined “Poisson adequacy”™ to be the
proportion that the Poisson estimate is of the negative binomial estimate of necessary
sampie size, and stated the requirement that it be >0.95. Only 8 of the 273 cases represented
rare species that failed this requirement. Thus we conclude that a Poisson-based estimate
of necessary sample size will generally be adequate and appropriate.

Key words:  detection; endangered species; molluscs; Poisson; power, presence; rare species; sample
size; sampling; unionid.

INTRODUCTION and m is the mean) with k small, approach the Poisson

{s*/m — 1) as the event becomes rare and thus the
mean m becomes small. Since 52/m = 1 + m/k in the
negative binomial, it is obvious that s*/m — 1 as m —
0 (so long as k is not also approaching O at the same
or a faster rate). Obviously “rarity” is a relative thing,
If there are fewer individuals in & given size area then
m will decrease, but so will it decrease if there is the
same density of individuals and smaller quadrats are
used. It 1s easy to show thai when sampling aggregated
distributions of organisms, for a given coverage (2 X
= pin) it is better to sample with many small quadrats
(large » and small m) than 1o use a few large guadrats
(small » and large m). See Green (1979) for discussion.
For our purposes here we wish to maintain gener-
ality, and try to show that our resulis apply 1o any rare-
species sampling situation. Somewhat arbitrarily we

What should be the basis for allocation of sampling
effort when the objective is to detect the presence of 2
rare species? Kovalak et al. {1986) discuss this guestion
with emphasis on sampling methods, on species vs.
number of individuals models, and on number of
quadrats needed to obtain specified confidence limits
on estimates of mean density. Here we will focus on
the number of quadrats needed to detect the presence
of (i.e., coliect at least one of) a rare species (given some
target density, i.e., degree of rareness), with some spec-
ified probabiiity of detection.

Intuitively the sampling distribution should approx-
imate the Poisson, which can be derived from other
common distributions (e.g., binomial, negative bino-
mial) by simply assuming that the event is rare—that
the probability of collecting an individual in any given

sample is low. Even aggregated (clumped, patchy) dis-
tributions, such as the negative binomial (* = m +
m?/k, where §° is the variance in number per unit area

' Manuscript received 20 November 1991; revised and zac-
cepted 2 September 1962,

will declare that any species having true density ex-
ceeding 0.1 per sample unit size (e.g., auadrat size) 15
not rare. What densities <0.1 are to be considered rare
we leave 1o individual taste; we assume the burden of
demonstrating valiid results for any density <C.1,

We approach the problem in two steps. First we
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derive appropriate formulag, based on the Poisson and
negative binomial distributions, for & sample number
adequate to detect the presence of rare species with
some specified probability of detection. This is in es-
sence a power analysis. Power = 1 — §, and § = the
probability of the Type 2 error = the probability of
allocating # quadrats and failing to coliect a species
that is actually present in that habitat and has some
mean density m. (See Green 1989 and references cited
therein for more discussion of power analysis in bio-
logical applications.} Then we gvaluate the sampling
distributions of the unionid species in two data sets to
assess the adequacy of the Poisson formula relative 1o
the negative binomial. The latter describes most any
spatial distribution of organisms, from random to high-
by agpregated, quite well {(Green 1979 and references
cited therein), and there is no reason it should not do
so for our purposes. Thus we use the negative binomial
estimate of necessary sample size (number of quadrats)
n as the standard against which the estimate based on
the Poisson approximation will be judged.

Our goal, in the end, is to have a generally applicable
formula for estimating necessary sample size to collect
(i.e., detect the presence of) a species having a specified
depree of rareness and a specified Type 2 ersor prob-
ability, Any formula based on the negative binomial
would also require an estimate of the parameter k, and
thus a much greater sampling efiort than that needed
to simply coliect an individual of the species. A Pois-
son-based formula, on the other hand, would only re-
quire specification of a degree of rareness and a Type
2 error probability. Therefore we hope to demonstrate
the adequacy of a Poisson-based formula.

DERIVATION OF POWER FORMULAE
The probability of obtaining X" individuals in a single
sample from a Poisson distribution with mean m is
e
X’

Py =m
and the probability of obtaining 0 individuals {(an emp-
ty sample) is

Py=em.

In n independent samples the probability of obtaining
0 individuals {(all n samples are empty) is

Pyro= (e = g7 = oY,

The probability of obtaining at least one individual in
at least one of nindependent samples (=the probability
of detecting that species) is

P)U,n =] e Pn” =] — g—mn,

By rearrangement we obtain
i
n= - -Jog(l = p.g. 1
m

which is the number of samples needed to detect the
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presence of a rare species with power 1 — 8 = p.g,.
Thus Eq. 1 can be written

n= - ;—;— log 8. (2)

For 1 — A = 0.95 this reduces to the simple relationship
n=3'm.

Thus the necessary sample size for a 0.95 chance of
detecting a species is equal to 3 divided by the mean
density of that species.

Now lel us repeat this derivation using the nepative
binomial distribution

_ ier“"(iu:,\fwl)z m \
Px Kl Xk — 1) \m+k
—k
Po=(1+%>
T R\ P
o™ = X "k

=1 -pr=1- Lem)
Do Do Y .

By rearrangement we obtain

_ _liog(l ~poo) 1 log§

i - e Ze——— (3}
log(l -+ 7{—)

K m
iog(l + I)

In all of the above we have used the same symbols
(e.g., m and k) interchangeably for population param-
eters and for sampling estimaies of these parameters.
Which applies should be clear from the context. This
keeps the notation simple, and in any case the devel-
opment of our argument is more heuristic than formal.

When estimates of parameters are used as predictors
in equations, e.g., the sample mean in Eq. 3, there wili
be an added component of variance associated with
the equation’s estimate (of » in this case). This could
be variance due to sampling or counting error, or both.
(For our data there would be negligible counting error,
relative to sampling error.) There should be no bias
unless regression slope parameters are being estimated.
When they are (see next section), the effect of a pre-
dictor variable estimated with error is to bias the es-
timate of the slope of the ordinary least squares re-
gression toward zero. Thus the strength of a relationship
will be underestimated. See McArdle (1988} for a re-
view of this problem.

We define the adequacy of the Poisson assumption
as the ratio R, = mn,/n,. For example, the Poisson-
based estimate of sampie size (from Eq. 2) needed to
have a 95% chance of detecting the presence of a species
having mean density 0.1 is n, = 29.96. If k is 1, then
the negative binomia} estimate (from Eq. 3} 1s n,, =
31.43. Thus the adeguacy of the Poisson assumption
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TABLE 1.

The 37 unionid moltusc species that were collected.
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Actinonalas carinaia
Actinonaias peclorosa
Amblema plicata

© Conradilla caelata
Cumberlandia monodonia
Cuclonaias ruberculata
Cyprogenia irrorala
Dromus dromas
Elliptio dilatatus
Epioblasma brevidens
Epioblasma capsaeformis
Epioblasma iriquetra
Fusconaia barnesiana
Fusconala cuneolus
Fusconala edgariana
Fusconaia subrotunda
Lampsilis fasciola
Lampsilis ovata

Lasmigona costala
Lastena lata

Leptodea fragilaris
Lexingionia dolabelloides
Ligumia recta
Medionidus conradicus
Megalonaias giganiea
Obliguaria reflexa
Plethobasus cyphyus
Plewrobema cordatum
Pleurobema oviforme
Potamilus alata
Prychobranchus fasciolaris
Prychobranchus subtentum
Quadrula cvlindrica
Cuadria pustulosa
Tritongonia verrucosa
Truncilla truncata

Villosa iris

is R, = n,/n,,=0.953. The bias of the Poisson estimate
(relative to the assumed unbiased negative binomial
estimate) is R, — 1 = —0.047, or —4.7%. In general,
combining FEgs. 2 and 3,

X
Ry = —10g(1 + 1’3).
nb 11 k

Now we define R, = m/k, and, substituting R, for
m/k, we obtain

jog(l + Ry

R, = & =
Thus we see that the ratio R, = m/k determines the
adequacy of the Poisson assumption R, = n,/n,,. For
example the ratio R, = m/k = 0.107 corresponds to

an adequacy of R, = 0.95. In a scatterplot of m vs. k
for real data, the boundary for a Poisson adequacy of
0.935 would be the line m = 0.107 k. In a log-log piot
of m vs. k, the boundary would be the line log m =
log 0.107 + log k (as in Fig. 2, which presents resuits
described below).

THE UNIONID SAMPLING DISTRIBUTIONS

Two data sets (Ahlsted! 1986) were used to evaluate
the sampling distributions of the 37 unionid species
that were collected (Table 1). The first data set was
obtained from 345 0.25-m* quadrats allocated within
11 “river miles™ (17.6 river kilomeires; distance mea-
sured along the path of the river) in the Clinch River
(Virginia-Tennessee) in 1979. The number of quadrats
per river mile varied between 16 and 40. The second

sum X N = 1221%

Midp't, Count

o 1104

5 88

10 23

5 6}

20 3

25 5}

36 4|

35 2

40 O

45 2

50 1

58 O

80 0

85 1

70 2z b

o 200 400 800 800 1000

1200

Fi. 1. The frequency distribution of number of individuals cotiected T X, in both unionid mollusc species data sets, for
all [221 species x river mile combinations {of which 948 have £ X = Q).
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TapLe 2. Analysis of covariance results for models predict-
ing 1/k, where k is the negative binomial parameter.

a. 1/k predicted by species, river, and density r; weighted by
total sampling area £ X

Source df F P
Species 36 ¢.31 > 05 NS
River 1 0.71 >.05 ns
m I 0.15 >.05 N8
Error 234

Total 272

b. Rank 1/k predicted by species, river, and rank density m;
weighted by 2 X

Source daf F P
Species 16 2.33 <, 01%*
River ! {0.86 > .05 Ns
m 1 63.59 < Q¥
Error 234

Total 272
*»* P < 0l

data set was obtained from 509 0.25-m* guadrats al-
located over 22 river miles in the Duck River {Ten-
nessee) in 1980. The number of quadrats per river mile
varied between 8§ and 40. Thus for both rivers the
proportion of the total area that was actually sampled
was small; we can assume an “infinite population”
sampling situation, and no finite population correction
is needed.

For each combination of species and river mile we
caiculated the frequency distribution, the sample vari-
ance and mean, an estimate of the negative binomial
parameter k (by solving the relationship k = m*/(s* -
), and the chi square test of the equality of variance
and mean (H,: Poisson distribution, which is a negative
hinomial distribution with k ~ o0). See Elliott (1977)
for discussion and examples of testing H,: Poisson and
estimating parameters of the negative binomial distri-
bution. Note that these data consist of independent
observations: different species obtained from sets of
quadrats collected from different river miles.

When a species was not collected at all in a given
river mile, no calculations were possible. This was the
case for 948 out of the 1221 species ¥ river mile com-
binations (37 x 33 = 1221} in the two rivers. For many
of the remaining 152 + 121 = 273 species x river miie
combinations there were only one or two individuals
coliected, This is something of a catch-22 situation in
that it is the instances of rarity that are of greatest
interest, and yet when few individuals are coliected the
parameter estimates are poor and the power of the test
against H,: Poisson is low. Therefore we must estimatie
the variance, mean, and k, putting the greatest weight-
ing on the instances where there are more guadrats and
where there are more mussels, and then back-extrap-
olate 1o the condition of rarity. The value of Z X (the
total number of mussels in all quadrats) seems an ap-
propriate weighting function for summary statistical
analvses (Fig. 1), It simply weights each species x river
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mile combination by how many mussels were present,
and thus roughly according 1o how reliable the param-
eter estimates are.

An analysis of covariance (ANCOVA) was per-
formed on the combined data from both rivers, with
the dependent variable 1/k used as an index of patch-
iness (1/k near zerc indicating randomness and 1/k
large indicating patchiness; see Elliott 1977). Category
predictor variables were river and species, and the co-
variate was the mean density, m. The purpose of this
statistical analysis is to determine whether there is a
“paichiness vs. mean density” relationship, and if there
is whether it differs among species or between the two
rivers. Because the data contain several extreme out-
liers (1/k baving five values of 5 x 10 while 97% of
the values were <20), no relationship is found (Table
2a). Conover and Iman (198!) showed that the ro-
bustness of nonparametric methods ¢an be obtained
by performing parametric statistical analyses on rank
data, so we repeated this ANCOVA using ranks of the
17k values and ranks of the means {Table 2b) and found
that rank 1/k is significantly predicted by rank m, that
the rank 1/k vs. rank i relationship significantly differs
among species, and that there 1s no difference between
the two rivers. The unbalanced design did not permit
tests for interactions (e.g., between species and rank
m1), but plots of the data do not suggest any interactions,
The relationship between rank 1/k and rank m is pos-
itive—a within species x river slope of +0.510 from
this ANCOVA —and only slightly different at +0.522
in a simple regression of rank i/k on rank m (species
and river not inciuded as predictor vanabies). This
indicates that sampling distributions become more
random as the mean density decreases, which agrees
with the theoretical rationale stated in the Introduc-
tion—that the Poisson distribution is approached as
the mean becomes small.

Any bias in the slope estimate caused by m, or rank

pry
S

m=0.107k

Mot Rars
nw 102

R ) P RO S PP PIPESEPLE S SURES

Rare, Polzaon not valid Rare, Poizsson valid
neg n w183
o I ) 5
a1 -’ 1 10
k

Fic. 2. A log-tog plot of the mean density / against the
Poisson parameter &, divided into three regions: m > (.1,
and the m < 0.1 region divided into two parts by the line m
= 0.107 k (representing mi/k = 0.107). » = the number of
cases from the two unionid mollusc data sets that fall into
cach region.
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Fig. 3. The necessary sample size »n as a function of mean

density m, for various degrees of power ! — §, when sampling
the Poisson distribution.

m, having been estimated with error is small. Geo-
metric mean regression vields slope estimates little gif-
ferent from the ordinary least squares estimates, In any
case the bias would always be toward a weaker “patch-
iness vs. mean density” relationship than actually ex-
ists.

As a check, a “resistant line” regression analysis
(Minitab 1989), which ignores extent of deviation of
points from the fitted line (and thus is unaffected by
outliers), was also used 1o regress 1/k on m (the actual
values, not the ranks), No ANOV A table or significance
test is possible with this method, but a similar result
was obtained, namely, a positive refationship between
i’k and m 17k = ~0.039 + 0.792m. Here we can
actually predict how 1/k (“patchiness”) will decrease
as mean n decreases. It is obvious that as m goes 10
zero the value of 17k goes to near zero. For a mean of
2 (slightly greater than the largest mean value of 1.71}
the relationship predicts k = (.65, i.e., strong patchi-
ness. A mean of 1 predicts k= 1.33, moderate “typical”
patchiness. A mean of 0.1 predicts & = 24.8, which is
near random. Sampling to detect rare species is the
topic here, and rarity by anybody’s definition surely
begins at densities of 0.1 per quadrat or less. In fact
the relationship obtained by resistant line regression
analysis predicts m/k > 0.107 (equivalent to Poisson
adequacy n,/n,, > 0.95) for densities m < 0.40, Thus
m < 0.1 would seem 1o satisfy both an intuitive def-
inition of rarity and also Poisson adequacy in terms of
the m/k ratio. Therefore these data support the prop-
osition that the Poisson distribution can be assumed
when sampling to detect the presence of rare species.

What about exceptions to this generality? In the AN-
COVA on rank data (Table 2b) there were significant
species differences in the patchiness vs. mean relation-
ship. With so many species (37) the power of the test
for species differences is high, The species differences
are not large; the percentage variation among adjusted
species means is only 25%. Also, there is no consistency
of the order of the species with respect to their patch-
iness; the ANCOVA was done separatety for each river
and it was found that the correlation of species’ ad-
justed mean patchiness between rivers was near zero.
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Thus there is no evidence of consistent species differ-
ences in the patchiness of their distributions.

How many of the 273 species * river mile combi-
nations that vielded any mussels (hereafter referred 1o
as “cases”) have {(g) low enough mean density to be
considered rare {and thus be relevant to this paper's
topic), and also have (b} m/k values too large for the
Poisson assumption 1o be valid? Fig. 2 displays this
information as a jog-log plot of m vs. &, divided into
three regions. Rarity is arbitrarily defined as m < 0.1,
and then within that region a valid Poisson assumpiion
is defined as n,/n.,, > 0.95, corresponding to mik <
0.107. (See previous section for discussion.) Only 8 of
the 273 cases (171 of which constitute rarity by this
definition) would be inappropriate for estimating the
necessary 7 based on the Poisson assumption. In fact
these estimaies of Poisson adequacy are probably con-
servative. Some of the 948 “empty” species X river
mile combinations undoubtedly did have that species
present, but it was not collected in the sample quadrats.
The number of such cases is unknown, but however
many there are they would probably represent densities
of m < 0.1 and m/k < 0.107. Thus they would fall
into the “rare and Poisson valid™ region in Fig. 2, and
would increase the proportion of cases for which the
Poisson assumption is adequate.

It is clear that the simple Poisson-based formula (Eq.
2} is usually adequate for estimating the necessary
number of sampies to detect the presence of a rare
species. Fig. 3 shows how the necessary number of
samples varies with the mean density, for various de-
grees of power, at k = oo (Poisson}. A power of1 - g
= (.05 would balance the conventional 1 — a = 0.95
confidence level, with Type | and Type 2 error prob-
abilities equal. Power equal to 1 — 8 = 0.8 has become
something of a standard in marine environmental

O'QT
0.64 :
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0'3«_
beta=3.05
0.04- 7n=30120 I 0
25 15
f 1 3 ; :
o0 .l 0.2 0.3 0.4
Mean

FiG. 4. The probability £ of not collecting any individuais
as a function of mean density m1, for various values of n, when
sampling the Poisson distribution. For example, if # = 30
quadrats yielded ne individuals of a species, then one could
conclude (with z risk of .05 of being wrong) that if the species
occurs at all in that habitat it has & mean density of <0,100
per quadrat.
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monitoring studies. A power of 1 — § = (.5 would
imply settling for a2 50:50 chance of detecting the pres-
ence of the species.

DISCUSSION

Given some power to detect the presence of a rare
species, what value of the mean density m should be
used when determining the necessary number of quad-
rats n7 Estimation of the mean (or the variance, or the
negative binomial parameter k) would TEQUITe £Ven
more samples than would detection of the species’ pres-
ence. One can only decide how rare a species one wants
to detect, and then allocate sampling effort accordingly.
Kovalak et al, (1986) refer to this chosen value of m
as the target density, and they ask ““What should this
density be?” They answer “This question must be ad-
dressed by reguiatory agencies charged with protecting
rare species.” We agree.

If the species is not collected then the probability
that any specified mean density exists can be stated
(Fig. 4). This is based on a rearrangement of Eq. 2 t0
solve for 8 as a function of m, given the sample number
#n that was actually used: -

B = @ = e-—}.‘X‘

This provides a probabilistic solution to what Kovalak
et al. (1986) refer to as “the corollary proposition: For
a level of sampling effort, what population densities
would have been detected?”

In conclusion, we wish to emphasize the generality
of these results, which do not depend on species, hab-
itat, sampling method, or sample unit size. The validity
of the Poisson-based formula (Eg. 1) depends only on
the assumption that the ratio m/k is less than some
specified value, e.g., 0.107 for the estimate of n from
the Poisson-based formaula to be at least 95% of the
correct value. Therefore it would be useful for some
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preliminary sampling to be done for any previously
unstudied species and habitat, to estimate the distri-
bution of m/k (for m at and below target densities, e.g.,
as described in Fig. 2), and thus estimate the likely
proportion of cases for which the Poisson assumption
will be inadequate.
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